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Abstract—The large-scale deployment of IoT devices acceler-
ates intelligent applications but also brings significant security
risks. Device detection helps mitigate these risks by identifying
unauthorized or rogue devices and improving visibility into
network activity. However, existing device detection methods
based on network and transport layer protocols face two key
challenges: encrypted traffic conceals protocol information, and
most approaches fail to detect out-of-distribution (OOD) devices,
limiting their effectiveness in real-world scenarios. To address
these issues, this paper proposes an OOD detection method
based on the 802.11 protocol. Specifically, we first extract
intrinsic packet attributes from the 802.11 protocol headers,
including transmission timing patterns and packet structure
characteristics, without relying on any network or transport
layer information. Then, these features are input into a bidirec-
tional long short-term memory (LSTM) model to learn sequential
dependencies, and the extracted feature embeddings are evalu-
ated through k-nearest neighbor (KNN) distance calculation to
detect both in-distribution (ID) and OOD samples. Experiments
conducted on 12 commercial IoT devices spanning 8 categories
demonstrate that the proposed method achieves effective device
identification and OOD detection performance.

Index Terms—S802.11, out-of-distribution, k-nearest neighbor

I. INTRODUCTION

With the rapid advancement of IoT technology, an ever-
growing number of devices have entered our daily lives.
Among various wireless communication protocols, Wi-Fi
has emerged as the most dominant, accounting for approxi-
mately one-third of global IoT connections [1]. Although this
widespread connectivity brings considerable convenience, the
sharp increase in both the diversity and volume of IoT devices
has significantly complicated network infrastructures. As a
result, IoT ecosystems are increasingly exposed to security
challenges of unprecedented scale [2].

As IoT applications continue to evolve, devices are no
longer confined to traditional sensing roles. They are now
capable of advanced perceptual tasks such as gesture recog-
nition via wireless signals [3], [4]. While these advancements
highlight the enhanced sensing adaptability of IoT systems,
they also heighten security risks, as the increasing complexity
of perceptual interactions and large-scale deployments intro-
duces new attack surfaces and vulnerabilities. In such dynamic

environments, unauthorized or rogue devices may easily blend
in with legitimate traffic, posing significant threats to data
integrity and network stability. Therefore, accurately identi-
fying and monitoring the types of devices connected to the
network has become a fundamental requirement for ensuring
system security. To address these challenges, various device
identification methods have been proposed. Some approaches
leverage physical-layer features such as Wi-Fi channel state
information (CSI) [5], [6], while others depend on upper-layer
protocols information (e.g. ICMP, DNS, IP) [7], [8]. However,
as IoT devices increasingly adopt encryption technologies
such as WPA/WPA2 [9], upper-layer protocols often become
inaccessible. Consequently, these limitations severely restrict
the practicality of existing methods in real-world deploy-
ments. To overcome this, recent papers such as Lumos [10]
and IoTBeholder [11] have proposed leveraging unencrypted
features in 802.11 protocol headers. While these methods
bypass encryption barriers and enable classification of known
device types, they still fall short in addressing a more critical
and practical need: the detection of out-of-distribution (OOD)
devices. In dynamic IoT environments, previously unseen
devices often join the network. Misclassifying these unknown
devices as legitimate ones can introduce severe security risks.
In real-world IoT environments, new and unknown devices
frequently appear, posing potential security risks if they are
misclassified as legitimate known devices. Therefore, effective
OOD detection is not merely an extension of device identi-
fication but a fundamental capability necessary for building
trustworthy IoT systems.

To address the aforementioned challenges, this paper con-
ducts OOD detection based solely on features extracted from
the 802.11 protocol. The approach leverages unencrypted
802.11 data frame headers to support detection in encrypted
network environments. Specifically, the process consists of the
following steps. First, 802.11 packets are passively captured,
and retransmitted frames are filtered out to retain valid data
frames. Second, the processed packet sequences are fed into
a bidirectional long short-term memory (LSTM) [12] model
to extract temporal feature patterns that characterize device
behaviors. Finally, the extracted embeddings are compared



against a reference feature set using a k-nearest neighbor
(KNN) algorithm, enabling simultaneous classification of ID
devices and detection of OOD samples based on distance
thresholds. In summary, the main contributions of this paper
are as follows:

o We break away from dependence on upper-layer proto-
cols, accomplishing IoT device detection solely through
the 802.11 protocol.

o We integrate OOD detection into traditional detection
methods, enabling effective identification of unknown
IoT devices in networks.

o In complex real-world environments, when half of the
test devices are OOD, the proposed method achieves
an area under the receiver operating characteristic curve
(AUROC) of 0.9031, with a false positive rate (FPR) of
only 0.094 at 80% true positive rate (TPR).

II. RELATED WORK

In the field of IoT device detection, a range of methods
have been proposed, focusing on identifying devices based
on network traffic characteristics. Many papers have relied on
network-layer and transport-layer protocols to extract tempo-
ral and spatial features for classification. For example, Ma
et al. [7] leveraged protocol information from the network
and transport layers to obtain spatiotemporal traffic patterns,
enabling the identification of IoT devices and the estima-
tion of devices hidden behind network address translators
(NATs). Bai et al. [8] utilized DNS and ICMP protocols,
employing deep learning models for automatic IoT device
classification. Meidan et al. [13] applied a random forest
algorithm to features extracted from continuous TCP sessions
to detect unauthorized IoT devices. Guo et al. [14] proposed
a method based on analyzing communication patterns at
the IP layer to identify device types. Similarly, IoTAthena
[15] analyzed raw IP-layer traffic with timestamps to reveal
device activities. Although these methods have demonstrated
strong device identification capabilities, they rely heavily on
upper-layer protocol data. In encrypted network environments,
their effectiveness is significantly limited. Moreover, many
machine learning-based approaches inherently assume that all
input samples belong to known classes, making them prone
to misclassifying OOD devices as known types, which can
introduce critical security risks.

To overcome the limitations of upper-layer dependency,
several papers have explored using the 802.11 protocol,
whose frame headers remain visible under encryption. Lumos
[10] manually selected partial 802.11 header features and
trained machine learning models for device identification and
classification. IoTBeholder [11] further aggregated 802.11
packets into traffic bursts and used machine learning models
to identify device types. Alyami et al. [16] leveraged only
802.11 frame header information, employing multiple ma-
chine learning techniques to fingerprint and infer the states
of 12 popular IoT devices. These papers confirm that IoT
device identification is feasible without relying on upper-
layer protocols. However, similar to earlier approaches, they

primarily focus on classifying known devices and overlook
the challenge of OOD detection. In real-world deployments,
where previously unseen devices frequently emerge, the ab-
sence of OOD detection mechanisms can result in unknown
devices being mistakenly classified as legitimate, thus posing
serious security threats.

III. 802.11 PROTOCOL

The 802.11 protocol defines multiple frame types, including
control frames, management frames, and data frames. Since
data frames serve as the primary frame type for IoT devices
to transmit data and carry core information about device
traffic characteristics, we primarily capture data frames in the
802.11 protocol [11]. Among these, a special type called the
null function data frame (NFDF), also referred to as a null
packet, which is mainly used to transmit control information
such as device power-saving mode switching and triggering
of special network activities [17]. Although its structure is
similar to that of a standard data frame, it does not contain
a payload and is composed only of a frame header and a
frame trailer. Given that these frames do not transmit actual
data and the number of such frames sent may vary due to
functional differences among IoT devices, they are retained
but not recorded as valid data packets (valid data packets refer
to data frames containing payloads). Additionally, when the
sender does not receive an acknowledgment frame within a
specific time window after transmitting a data packet, it trig-
gers retransmission. Retransmitted packets can significantly
interfere with the learning of a device’s baseline behavior.
For example, the actual arrival time of packets is affected by
the number of retransmissions, introducing uncertainty into
packet arrival timestamps that may disrupt the learning of
temporal patterns in device behavior. Frequent retransmissions
also increase captured traffic fluctuations, making it difficult
to identify normal traffic patterns and impacting the accuracy
of device behavior modeling. Therefore, we chose to filter out
retransmitted packets to mitigate these issues.

IV. OUT-OF-DISTRIBUTION DETECTION

The process is shown in Fig. 1. The Packet Flow Acqui-
sition is primarily responsible for the real-time capture of
802.11 protocol packets. The Data Preprocessing performs
batch padding on data across different batches. The Sequential
Traffic Analyzer is responsible for extracting temporal features
from the processed data streams, which is implemented using
a bidirectional LSTM. The OOD Decision determines whether
a sample belongs to the OOD category by calculating the
Euclidean distance between the sample and the reference
dataset.

The operation of the entire IoT device OOD detection
method is divided into two phases: training and detection.
During the training phase, data extracted from raw packet
streams (categorized by MAC addresses) undergoes padding
processing. This is because the number of packets per MAC
address is variable during capture, resulting in variable-length
data streams. The processed data streams are then input
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Fig. 1.

into the sequential traffic analyzer. Through this process, the
sequential traffic analyzer learns the temporal features patterns
of different IoT devices.

In the detection phase, when the input packet stream
contains OOD samples, the sequential traffic analyzer extracts
temporal features from each sample. These features are nor-
malized, and the euclidean distance between each feature and
the reference dataset is calculated. Based on this distance,
the system determines whether a sample belongs to the OOD
category. If it is identified as OOD, the sample is labeled as
an unknown device. Otherwise, it is classified into a specific
known device category.

A. Packet Flow Acquisition

In this section, we capture all 802.11 packet streams trans-
mitted by IoT devices and categorize them by each device’s
MAC address for storage. To avoid redundant data, we fo-
cus on retaining core traffic characteristics by filtering out
retransmitted packets. For each sample, we collect 100 valid
data packets, defined as the sequence y = (1, %2, ,Z100),
where y represents the sample and z; denotes individual
valid packets within this sequence. Additionally, we retain
null packets, which indicate that the IoT device is engaged in
special network activities (e.g., power-saving mode) but carry
no effective payload information. Although these packets
contain no useful payload, they reflect specific behavioral
patterns of certain IoT devices and are therefore included
in the dataset while excluded from valid data packet counts.
Consequently, each sample consists of 100 valid data packets
interspersed with j null packets, forming the sequence y; =
(®1,n1,n2, 22, -+ ,Nj, T100), Where n; represents null pack-
ets. Fig. 2 illustrates a representative input sample composed
of 100 valid data packets interspersed with j null packets. The
sample may belong to either an ID or OOD category.
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Fig. 2. An input sample with 100 valid packets and j null packets, labeled
as either ID or OOD.

B. Data Preprocessing

This section focuses on extracting coarse-grained fea-
tures from raw packet sequences and applying appropriate
padding to meet the input requirements for model training.
The extracted features include inter-packet time intervals,
packet lengths, frame subtypes, transmission directions (in-
coming/outgoing), and quality of service (QoS) control field.
These features effectively capture the behavioral patterns of
IoT devices within a specific time window. Taking typical
devices as examples, the packet flow from a camera generally
exhibits short time intervals, large packet sizes, fixed subtypes,
predominantly outgoing direction and a QoS control field
labeled as a video stream. In contrast, the packet flow from
a table lamp tends to show longer time intervals, moderate
packet sizes and a high frequency of null packets. Inspired by
a previous paper on traffic burst patterns [11], our scheme sets
the burst interval threshold to 1 second, with each burst cycle
containing 100 effective packets. This configuration allows us
to capture fine-grained temporal features within burst traffic,
such as short-interval high-frequency transmission patterns,
while also accounting for macro temporal differences between
burst cycles, including periods of silence or low-frequency
interaction characteristics.
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C. Sequential Traffic Analyzer

This section presents the temporal feature extraction method
for characterizing IoT device behaviors from 802.11 proto-
col traffic. The primary objective is to learn discriminative
sequential patterns from packet streams that may contain
both valid data packets and null packets. To achieve this, we
adopt a deep sequential model based on bidirectional LSTM
model. The model processes each input sequence containing
100 valid data packets, which may be interspersed with null
packets representing power-saving states. The bidirectional
LSTM, which consists of two layers with 64 hidden units
each, learns both forward and backward dependencies in the
packet sequences. This design enables the model to maintain
contextual awareness across null packets and capture compre-
hensive temporal relationships, including periodic transmis-
sions, burst behaviors, and characteristic silent periods. The
gating mechanism of LSTM cells proves particularly effective
for handling these irregular sequences, as it selectively retains
relevant state information while processing valid packets and
skipping null packets.

D. OOD Decision

This section describes the OOD detection strategy em-
ployed in our method. The goal is to detect whether a test
sample originates from an OOD device. To achieve this, we
adopt a non-parametric detection approach inspired by the
deep nearest neighbor detection method proposed in [18].

The underlying idea is to estimate the density of the
learned feature space without assuming a global parametric
distribution. Specifically, we construct a reference dataset
7Z = (21,29, ...,2y,), where z; denotes the feature embedding
of a training sample, and Z corresponds to the embeddings
of known IoT device categories. Each z; is obtained from a
sample sequence y; in the training set. During inference, each
test sample y, is processed by the trained model to obtain
its feature embedding o, which is then compared against the
reference set using KNN.

To reduce the impact of feature norm variations and en-
sure comparability in the distance space, both the reference
embeddings and the test embedding are normalized via L2
normalization:

- Z; o o
1|2 o]l

The Euclidean distance between the normalized test sample
and each reference embedding is then computed as follows:
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Let d(l) < d(g) < .0 < d(n) be the sorted distances
between o* and all reference points. We define the k-th nearest
neighbor distance as:

i=1,2,....n )

dp(0") = dr) 3)

An OOD detection score is then defined as the negative
distance to the k-th nearest neighbor:

S(0) = —di(0") 4)

A higher score indicates a closer distance to the ID ref-
erence distribution. Given a threshold 7, the decision rule
is defined as follows: if S(o) > 7, the sample is classified
as an ID sample and is passed to the classifier for category
prediction. Otherwise, it is classified as an OOD sample and
rejected as unknown.

V. EXPERIMENTS AND RESULTS

In this section, we introduce the performance of our method
in detecting OOD devices from real-world captured IoT device
traffic.

A. Experimental Setup

We collected traffic generated by 12 IoT devices across 8
categories: smart socket, smart power strip, camera, doorbell,
smart speaker, table lamp, smart screen, and body fat scale.
Given the variability in traffic volume and timing across
different devices, we applied differentiated sampling over a
one-week period. For high-rate devices, packet flows were
collected intermittently, while for low-rate devices, continuous
collection was used. This process resulted in a total of 27,766
samples, with more than 1,100 samples per category. To
evaluate the model’s ability to detect unknown devices, we
first conducted single-category OOD experiments in which
each IoT device category was treated as out-of-distribution
in turn. We then assessed performance in more challenging
scenarios by designating half of the categories as OOD,
simulating high-diversity conditions where behavioral overlap
among device types may occur. We defined two experimental
setups:

o Case 1: Randomly select half of the categories as the
OOD samples and the remaining half as the ID samples,
modeling complex networks with a high proportion of
unknown devices.

o Case 2: Swap the OOD and ID samples from Case 1 to
validate the feasibility of the method in scenarios where
the distribution of known/unknown categories is reversed.

These experimental setups include single-category OOD
detection and balanced-category partitioning through Case
1 and Case 2. This combination helps verify the model’s
effectiveness in both fine-grained unknown detection and
broader category distribution scenarios. The corresponding
device categorizations are shown in Table I.

The performance of our method is evaluated using the
following metrics: (1) the false positive rate (FPR95) of OOD
samples at an ID sample TPR of 95%; (2) the false positive
rate (FPR80) of OOD samples when ID sample TPR is 80%;
(3) AUROC is used to evaluate the overall ability of the model
to distinguish between ID and OOD samples.



TABLE I
OOD AND ID SAMPLES SETUP UNDER COMPLEX ENVIRONMENT
Case ID Category OOD Category
Camera Smart Socket
Doorbell Smart Power Strip
Case 1 Table Lamp Smart Speaker
Body Fat Scale Smart Screen
Smart Socket Camera
Smart Power Strip Doorbell
Case 2 Smart Speaker Table Lamp
Smart Screen Body Fat Scale

B. Experimental Results

When using single-category IoT device samples as OOD
samples, the results are shown in Table II (through cross-
validation, we selected K = 5), which presents the detection
results for scenarios where each OOD sample consists of a
single device category. According to the metrics, the smart
power strip demonstrates the best performance. Its FPR95
is only 0.0067, FPR80 is 0, and AUROC reaches 0.9936,
leading across all three indicators. The table lamp, body
fat scale, and smart screen also achieve an FPR80 of O,
with AUROC values all exceeding 0.96, reflecting excellent
detection effectiveness. The doorbell and smart socket exhibit
moderate detection performance, while the camera and smart
speaker show relatively higher FPR95 and FPR80 and lower
AUROC. Nevertheless, their AUROC values all exceed 0.91.
It can be seen that when the OOD samples belong to a single
category, the detection performance is generally excellent.

TABLE II
COMPARISON OF EXPERIMENTAL RESULTS OF SINGLE-CATEGORY OOD
DETECTION. T INDICATES LARGER VALUES ARE BETTER AND VICE

VERSA.
OOD Category FPR95| FPR80] AUROCT
Camera 0.3380 0.1546 0.9186
Doorbell 0.1463 0.0643 0.9564
Table Lamp 0.0193 0.0 0.9896
Body Fat Scale 0.0378 0.0 0.9619
Smart Socket 0.2397 0.0038 0.9676
Smart Power Strip 0.0067 0.0 0.9936
Smart Speaker 0.2879 0.1229 0.9143
Smart Screen 0.0169 0.0 0.9853

Overall, detection performance varies when different IoT
device categories serve as OOD samples. Some devices are
easily detectable due to distinct feature differences from ID
data, while others present greater challenges due to feature
similarities. As shown in Fig. 3(a) presents a scatter plot
of features extracted from ID and OOD data after t-SNE
dimensionality reduction. The smart power strip category
forms a separate cluster with distinct boundaries, clearly
distinguishable from other ID categories. This demonstrates
the effectiveness of our method in detecting the smart power
strip as an OOD sample by leveraging the temporal feature
differences between OOD and ID categories. In Fig. 3(b),
the AUROC curve further confirms this, with a score of

0.9936, indicating the method’s excellent ability to distinguish
between OOD (smart power strip) and ID samples.
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(a) The scatter plot of the feature distribution
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Fig. 3. Distribution plot and plot displaying the ROC curve with its
corresponding AUC value for the smart power strip as the OOD sample

In the Case 1 setup, a scatter plot was obtained after t-
SNE dimensionality reduction, as shown in Fig. 4. The plot
includes four ID IoT device categories labeled by product
names and four OOD categories identified by MAC addresses,
with the OOD categories consisting of two smart speakers,
two smart power strips, two smart sockets, and one smart
display. Our method successfully classifies IoT devices, with
each device type forming distinct clusters in the feature space.
However, due to similarities in network activity between some
devices and unknown IoT devices, such as the video doorbell,
which exhibits similar activity patterns to devices like cameras
and smart displays due to its ability to transmit video, feature
space overlaps occur. Additionally, like the smart socket, the
video doorbell sends null packets to indicate power-saving
mode. These temporal feature similarities lead to overlaps in
the feature space, contributing to a decline in the performance
of OOD detection for Case 1.

TABLE III
COMPARISON OF EXPERIMENTAL RESULTS FOR OOD DETECTION IN
COMPLEX ENVIRONMENTS

FPR95] FPR80, AUROC?T
Case 1 0.2983 0.0207 0.9568
Case 2 0.6392 0.0940 0.9031

As shown in Table III, experimental results demonstrate
that with K = 5, the method achieves favorable OOD
detection performance in Case 1. The AUROC reaches 0.9568,
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Fig. 4. Scatter plot of Case 1 under complex settings, showing four ID
categories labeled by product names and four OOD categories identified by
MAC addresses.

as illustrated by the ROC curve in Fig. 5(a), with FPR95
at 0.2983 and FPRS80 significantly reduced to 0.0207. In
Case 2, although the FPROS rises to 0.6392, the AUROC
remains above 0.9, and the FPR80 drops to 0.0940, as shown
in the ROC curve in Fig. 5(b). These results indicate that
the method maintains strong discriminative capability across
different category distributions.

Receiver Operating Characteristic Receiver Operating Characteristic

True Positive Rate
\,

True Positive Rate
\

ROC curve (area = 0.9563) 0o # ROC curve (area = 0.9031)

00 02 08 10 0o 02 06 08 1.0

04 06 04
False Positive Rate False Positive Rate

(a) Case 1 (b) Case 2

Fig. 5. ROC curve and AUC value experimental result plots in complex
environments

Combining the experimental results in Table II and Table
III, all AUROC values exceed 0.9, demonstrating the effec-
tiveness of our method in IoT device OOD detection. By
capturing 802.11 protocol traffic, extracting temporal features,
and applying a KNN-based distance metric, the method accu-
rately distinguishes ID from OOD samples. It shows robust
performance when detecting devices with clear behavioral
differences, while temporal feature similarities among certain
devices can cause overlaps in the feature space, leading to
a moderate decline in detection performance for behaviorally
similar OOD samples.

VI. CONCLUSION

This paper presents an effective OOD detection method
for IoT devices, leveraging features extracted solely from the
802.11 protocol. By capturing temporal features from Wi-
Fi data frames and employing a bidirectional LSTM model
combined with a KNN distance metric, the proposed approach
effectively distinguishes between ID and OOD devices with-
out relying on upper-layer protocol information. Experimental
evaluations on 12 commercial IoT devices across 8 cate-
gories demonstrate that the method achieves high detection

performance, with AUROC values exceeding 0.9 in various
scenarios. The results indicate that the approach maintains
robust detection capabilities even in complex environments
with a high diversity of unknown devices. These findings
underscore the potential of utilizing 802.11 protocol features
for enhancing the security and reliability of IoT networks.

(1]
[2]
(3]

(4]

[3]

(6]

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

Enea, “Wi-fi based iot - insights and market
https://www.enea.com/insights/wi-fi-based-iot/, 2023.

R. A. R. Ait Mouha et al., “Internet of things (iot),” Journal of Data
Analysis and Information Processing, vol. 9, no. 02, p. 77, 2021.

H. Yan, X. Zhang, J. Huang, Y. Feng, M. Li, A. Wang, W. Ou, H. Wang,
and Z. Liu, “Wi-sfdagr: Wifi-based cross-domain gesture recognition via
source-free domain adaptation,” IEEE Internet of Things Journal, 2025.
X. Zhang, J. Huang, H. Yan, Y. Feng, P. Zhao, G. Zhuang, Z. Liu,
and B. Liu, “Wiopen: A robust wi-fi-based open-set gesture recognition
framework,” IEEE Transactions on Human-Machine Systems, 2025.
X. Zhang, J. Zhang, Z. Ma, J. Huang, M. Li, H. Yan, P. Zhao,
Z. Zhang, Q. Guo, T. Zhang et al., “Camlopa: A hidden wireless
camera localization framework via signal propagation path analysis,”
arXiv preprint arXiv:2409.15169, 2024.

J. Huang, B. Liu, C. Miao, X. Zhang, J. Liu, L. Su, Z. Liu, and
Y. Gu, “Phyfinatt: An undetectable attack framework against phy layer
fingerprint-based wifi authentication,” IEEE Transactions on Mobile
Computing, vol. 23, no. 7, pp. 7753-7770, 2023.

X. Ma, J. Qu, J. Li, J. C. Lui, Z. Li, and X. Guan, “Pinpointing hidden
iot devices via spatial-temporal traffic fingerprinting,” in /EEE INFO-
COm 2020-IEEE conference on computer communications. IEEE,
2020, pp. 894-903.

L. Bai, L. Yao, S. S. Kanhere, X. Wang, and Z. Yang, “Automatic device
classification from network traffic streams of internet of things,” in 2018
IEEE 43rd conference on local computer networks (LCN). 1EEE, 2018,
pp. 1-9.

B. I. Reddy and V. Srikanth, “Review on wireless security protocols
(wep, wpa, wpa2 & wpa3),” International Journal of Scientific Research
in Computer Science, Engineering and Information Technology, vol. 5,
no. 4, pp. 28-35, 2019.

R. A. Sharma, E. Soltanaghaei, A. Rowe, and V. Sekar, “Lumos:
Identifying and localizing diverse hidden {IoT} devices in an unfamiliar
environment,” in 31/st USENIX Security Symposium (USENIX Security
22), 2022, pp. 1095-1112.

Q. Zou, Q. Li, R. Li, Y. Huang, G. Tyson, J. Xiao, and Y. Jiang,
“Iotbeholder: A privacy snooping attack on user habitual behaviors
from smart home wi-fi traffic,” Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, vol. 7, no. 1, pp. 1-26,
2023.

A. Graves and J. Schmidhuber, “Framewise phoneme classification
with bidirectional Istm and other neural network architectures,” Neural
networks, vol. 18, no. 5-6, pp. 602-610, 2005.

Y. Meidan, M. Bohadana, A. Shabtai, M. Ochoa, N. O. Tippenhauer,
J. D. Guarnizo, and Y. Elovici, “Detection of unauthorized iot devices
using machine learning techniques,” arXiv preprint arXiv:1709.04647,
2017.

H. Guo and J. Heidemann, “Ip-based iot device detection,” in Pro-
ceedings of the 2018 workshop on IoT security and privacy, 2018, pp.
36-42.

Y. Wan, K. Xu, F. Wang, and G. Xue, “Iotathena: Unveiling iot
device activities from network traffic,” IEEE Transactions on Wireless
Communications, vol. 21, no. 1, pp. 651-664, 2021.

M. Alyami, I. Alharbi, C. Zou, Y. Solihin, and K. Ackerman, “Wifi-
based iot devices profiling attack based on eavesdropping of encrypted
wifi traffic,” in 2022 IEEE 19th Annual Consumer Communications &
Networking Conference (CCNC). 1EEE, 2022, pp. 385-392.

Y. Mizuno, Y. Ohishi, and N. Ishikawa, “A simple metric that correlates
with public wi-fi throughput,” Electronics Letters, vol. 59, no. 8, p.
el2795, 2023.

Y. Sun, Y. Ming, X. Zhu, and Y. Li, “Out-of-distribution detection
with deep nearest neighbors,” in International Conference on Machine
Learning. PMLR, 2022, pp. 20 827-20 840.

trends,”



